Part Number Hot Search : 
LTC1864 GFC9210 CAT93C46 N01114 A1532 33888 AM29853A STAC9766
Product Description
Full Text Search
 

To Download APT14F100S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  n-channel fredfet absolute maximum ratings thermal and mechanical characteristics g d s single die fredfet unit a v mj a unit w c/w c oz g inlbf nm ratings 14 9 56 30 875 7 min typ max 500 0 .25 0.11 -55 150 300 0 .22 5.9 10 1.1 parameter continuous drain current @ t c = 25c continuous drain current @ t c = 100c pulsed drain current 1 gate-source voltage single pulse avalanche energy 2 avalanche current, repetitive or non-repetitive characteristic total power dissipation @ t c = 25c junction to case thermal resistance case to sink thermal resistance, flat, greased surface operating and storage junction temperature range soldering temperature for 10 seconds (1.6mm from case) package weight mounting torque ( to-247 package), 6-32 or m3 screw symbol i d i dm v gs e as i ar symbol p d r jc r cs t j ,t stg t l w t torque typical applications ? zvs phase shifted and other full bridge ? half bridge ? pfc and other boost converter ? buck converter ? single and two switch forward ? flyback features ? fast switching with low emi ? low t rr for high reliability ? ultra low c rss for improved noise immunity ? low gate charge ? avalanche energy rated ? rohs compliant to-247 d 3 pak apt14f100b APT14F100S 1000v, 14a, 0.98 ? max, t rr 240ns apt14f100b APT14F100S power mos 8 ? is a high speed, high voltage n-channel switch-mode power mosfet. this 'fredfet' version has a drain-source (body) diode that has been optimized for high reliability in zvs phase shifted bridge and other circuits through reduced t rr , soft recovery, and high recovery dv/dt capability. low gate charge, high gain, and a greatly reduced ratio of c rss /c iss result in excellent noise immunity and low switching loss. the intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low emi and reliable paralleling, even when switching at very high frequency. microsemi website - http://www.microsemi.com 050-8160 rev c 5-2009
static characteristics t j = 25c unless otherwise specifed dynamic characteristics t j = 25c unless otherwise specifed source-drain diode characteristics 1 repetitive rating: pulse width and case temperature limited by maximum junction temperature. 2 starting at t j = 25c, l = 35.71mh, r g = 25 ? , i as = 7a. 3 pulse test: pulse width < 380s, duty cycle < 2%. 4 c o(cr) is defned as a fxed capacitance with the same stored charge as c oss with v ds = 67% of v (br)dss . 5 c o(er) is defned as a fxed capacitance with the same stored energy as c oss with v ds = 67% of v (br)dss . to calculate c o(er) for any value of v ds less than v (br)dss, use this equation: c o(er) = -1.15e-7/v ds ^2 + 2.03e-8/v ds + 3.93e-11. 6 r g is external gate resistance, not including internal gate resistance or gate driver impedance. (mic4452) microsemi reserves the right to change, without notice, the specifcations and information contained herein. g d s unit v v/c ? v mv/c a na unit s pf nc ns unit a v ns c a v/ns min typ max 1000 1.15 0.82 0.98 2.5 4 5 -10 250 1000 100 min typ max 14 56 1.0 205 240 355 430 0.90 2.20 8.90 12.90 25 min typ max 16 3965 55 335 135 70 120 21 60 28 29 95 26 test conditions v gs = 0v , i d = 250a reference to 25c, i d = 250a v gs = 10v , i d = 7a v gs = v ds , i d = 1ma v ds = 1000v t j = 25c v gs = 0v t j = 125c v gs = 30v test conditions mosfet symbol showing the integral reverse p-n junction diode (body diode) i sd = 7a , t j = 25c, v gs = 0v t j = 25c t j = 125c i sd = 7a 3 t j = 25c di sd / dt = 100a/s t j = 125c v dd = 100v t j = 25c t j = 125c i sd 7a, di/dt 1000a/s, v dd = 400v, t j = 125c test conditions v ds = 50v , i d = 7a v gs = 0v , v ds = 25v f = 1mhz v gs = 0v , v ds = 0v to 667v v gs = 0 to 10v , i d = 7a, v ds = 500v resistive switching v dd = 667v , i d = 7a r g = 4.7 ? 6 , v gg = 15v parameter drain-source breakdown voltage breakdown voltage temperature coeff cient drain-source on resistance 3 gate-source threshold voltage threshold voltage temperature coeffcient zero gate voltage drain current gate-source leakage current parameter continuous source current (body diode) pulsed source current (body diode) 1 diode forward voltage reverse recovery time reverse recovery charge reverse recovery current peak recovery dv/dt parameter forward transconductance input capacitance reverse transfer capacitance output capacitance effective output capacitance, charge related effective output capacitance, energy related total gate charge gate-source charge gate-drain charge turn-on delay time current rise time turn-off delay time current fall time symbol v br(dss) ? v br(dss) / ? t j r ds(on) v gs(th) ? v gs(th) / ? t j i dss i gss symbol i s i sm v sd t rr q rr i rrm dv/dt symbol g fs c iss c rss c oss c o(cr) 4 c o(er) 5 q g q gs q gd t d(on) t r t d(off) t f 050-8160 rev c 5-2009 apt14f100b_s
v gs = 6, 7, 8 & 9v 4.5v t j = 125c t j = 25c t j = -55c v gs = 10v 5v v ds > i d(on) x r ds(on) max. 250sec. pulse test @ <0.5 % duty cycle normalized to v gs = 10v @ 7a t j = 125c t j = 25c t j = -55c c oss c iss i d = 7a v ds = 800v v ds = 200v v ds = 500v t j = 150c t j = 25c t j = 125c t j = 150c c rss t j = 125c t j = 25c t j = -55c v gs , gate-to-source voltage (v) g fs , transconductance r ds(on) , drain-to-source on resistance i d , drain current (a) i sd, reverse drain current (a) c, capacitance (pf) i d , drain current (a) i d , drian current (a) v ds(on) , drain-to-source voltage (v) v ds , drain-to-source voltage (v) figure 1, output characteristics figure 2, output characteristics t j , junction temperature (c) v gs , gate-to-source voltage (v) figure 3, r ds(on) vs junction temperature figure 4, transfer characteristics i d , drain current (a) v ds , drain-to-source voltage (v) figure 5, gain vs drain current figure 6, capacitance vs drain-to-source voltage q g , total gate charge (nc) v sd , source-to-drain voltage (v) figure 7, gate charge vs gate-to-source voltage figure 8, reverse drain current vs source-to-drain voltage 0 5 10 15 20 25 30 0 5 10 15 20 25 30 -55 -25 0 25 50 75 100 125 150 0 1 2 3 4 5 6 7 8 0 2 4 6 8 10 0 200 400 600 800 1000 0 20 40 60 80 100 120 140 160 180 0 0.3 0.6 0.9 1.2 1.5 40 35 30 25 20 15 10 5 0 3.0 2.5 2.0 1.5 1.0 0.5 0 20 18 16 14 12 10 8 6 4 2 0 16 14 12 10 8 6 4 2 0 14 12 10 8 6 4 2 0 60 50 40 30 20 10 0 6,000 1000 100 10 60 50 40 30 20 10 0 apt14f100b_s 050-8160 rev c 5-2009
d 3 pak package outline to-247 (b) package outline e3 100% sn plated 15.49 (.610) 16.26 (.640) 5.38 (.212) 6.20 (.244) 6.15 (.242) bsc 4.50 (.177) max. 19.81 (.780) 20.32 (.800) 20.80 (.819) 21.46 (.845) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) 3.50 (.138) 3.81 (.150) 2.87 (.113) 3.12 (.123) 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 2.21 (.087) 2.59 (.102) 0.40 (.016) 0.79 (.031) drai n drai n source gate 5.45 (.215) bsc dimensions in millimeters and (inches ) 2-plcs. 15.95 (.628) 16.05(.632) 1.22 (.048) 1.32 (.052) 5.45 (.215) bsc {2 plcs. } 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 2.67 (.105) 2.84 (.112) 0.46 (.018) {3 plcs} 0.56 (.022) dimensions in millimeters (inches) heat sink (drain) and leads are plated 3.81 (.150) 4.06 (.160) (base of lead) drai n (heat sink) 1.98 (.078) 2.08 (.082) gate drain source 0.020 (.001) 0.178 (.007) 1.27 (.050) 1.40 (.055) 11.51 (.453) 11.61 (.457) 13.41 (.528) 13.51(.532) revised 8/29/97 1.04 (.041) 1.15(.045) 13.79 (.543) 13.99(.551) revised 4/18/95 microsemis products are covered by one or more of u.s. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. us and foreign patents pending. all rights reserved. 1ms 100ms r ds(on) 0.5 single pulse 0.1 0.3 0.7 0.05 d = 0.9 scaling for different case & junction temperatures: i d = i d(t c = 25 c) *( t j - t c )/125 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note : t 1 = pulse duration dc line 100s i dm 10ms 13s 100s i dm 100ms 10ms 13s r ds(on) dc line t j = 150c t c = 25c 1ms t j = 125c t c = 75c i d , drain current (a) v ds , drain-to-source voltage (v) v ds , drain-to-source voltage (v) figure 9, forward safe operating area figure 10, maximum forward safe operating area z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 11. maximum effective transient thermal impedance junction-to-case vs pulse duration i d , drain current (a) 1 10 100 1000 1 10 100 1000 100 10 1 0.1 0.30 0.25 0.20 0.15 0.10 0.05 0 100 10 1 0.1 apt14f100b_s 050-8160 rev c 5-2009


▲Up To Search▲   

 
Price & Availability of APT14F100S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X